--- title: "Maximum-likelihood estimation with the mixpoissonreg package" author: "Alexandre B. Simas" date: '`r format(Sys.time(), "%Y-%m-%d")`' output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Maximum-likelihood estimation with the mixpoissonreg package} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Fitting `mixpoissonreg` models via direct maximization of the likelihood function In the `mixpoissonreg` package one can easily obtain estimates for the parameters of the model through direct maximization of likelihood function. This estimation procedure has the advantage of being very fast, so we recommend this estimation as an alternative when the EM-algorithm takes too long to converge. We use **very good** initial guesses using the `gamlss` function from the `gamlss` package. One can obtain parameters estimates through direct maximization of the likelihood function by setting the `method` argument to "ML": ```{r warning=FALSE} library(mixpoissonreg) fit_ml <- mixpoissonreg(daysabs ~ gender + math + prog, method = "ML", data = Attendance) summary(fit_ml) ``` These estimates can also be obtained by using the `mixpoissonregML` function: ```{r warning=FALSE} fit_ml2 <- mixpoissonregML(daysabs ~ gender + math + prog, data = Attendance) summary(fit_ml2) ``` Notice that both of these methods produce identical estimates: ```{r} identical(coef(fit_ml), coef(fit_ml2)) ``` Both of these functions return objects of class `mixpoissonreg` and therefore all these methods are available for them: `summary`, `plot`, `coef`, `predict`, `fitted`, `influence`, `hatvalues`, `cooks.distance`, `local_influence`, `local_influence`, `local_influence_plot`, `augment`, `glance`, `tidy`, `tidy_local_influence`, `local_influence_benchmarks`, `autoplot`, `local_influence_autoplot`. One can also use the `lrtest`, `waldtest`, `coeftest` and `coefci` methods from the `lmtest` package to them. By using the structure `formula_1 | formula_2`, one can define a regression structure for the mean using `formula_1` (which must contain the reponse variable) and a regression structure for the precision parameter using `formula_2` (which must **not** contain the response variable). To fit a Poisson Inverse Gaussian regression model just set the `model` argument to "PIG". To change the link function for the mean parameter by changing the `link.mean` parameter (the possible link functions for the mean are "log" and "sqrt"). Analogously, to change the link function for the precision parameter, one must change the `link.precision` parameter (the possible link functions for the precision parameter are "identity", "log" and "inverse.sqrt"). For instance: ```{r warning = FALSE} fit_ml_prec <- mixpoissonregML(daysabs ~ gender + math + prog | prog, model = "PIG", data = Attendance) autoplot(fit_ml_prec) local_influence_autoplot(fit_ml_prec) lmtest::lrtest(fit_ml_prec) fit_ml_reduced <- mixpoissonregML(daysabs ~ gender + math + prog, model = "PIG", data = Attendance) lmtest::lrtest(fit_ml_prec, fit_ml_reduced) ``` **Remark**: *Notice that when using the methods `lmtest::lrtest` and `lmtest::waldtest` to compare more than one model, all the models must be of the same type, that is, they all must be or Negative Binomial regression models or they all must be Poisson Inverse Gaussian regression models.* Finally, one can obtain simulated envelopes by setting the `envelope` argument to the number of draws to be simulated. If there are simulated envelopes, the Q-Q plot from the `plot` and `autoplot` methods will contain the envelopes and the `summary` method will print the percentage of observations within the simulated envelopes. For example: ```{r warning = FALSE} fit_ml_env <- mixpoissonregML(daysabs ~ gender + math + prog | prog, model = "PIG", envelope = 100, data = Attendance) summary(fit_ml_env) plot(fit_ml_env, which = 2) autoplot(fit_ml_env, which = 2) ``` # Obtaining estimates without *formulas* If one has a matrix `X` of mean-related covariates, optionally a matrix `W` of precision-related covariates, and a vector (or one-dimensional matrix) `y`, one can fit a Mixed Poisson Regression model estimated via direct maximization of the likelihood function without the usage of *formulas* by using the `mixpoissonreg.fit` (with `method` argument set to "ML") or `mixpoissonregML.fit`. **Remark**: *It is important to notice that these functions* ***do not*** *return `mixpoissonreg` objects. Instead they return `mixpoissonreg_fit` objects. This means that several methods that are available for `mixpoissonreg` objects are* ***not*** *available for `mixpoissonreg_fit` objects.* ```{r} data("Attendance", package = "mixpoissonreg") X = cbind(1, Attendance$math) y = Attendance$daysabs mixpoissonregML.fit(X, y)$coefficients W = X mixpoissonregML.fit(X, y, W)$coefficients ```